3.608 \(\int \frac{\sqrt{f+g x}}{(d+e x)^{3/2} (a+c x^2)} \, dx\)

Optimal. Leaf size=351 \[ -\frac{2 e \sqrt{f+g x}}{\sqrt{d+e x} \left (a e^2+c d^2\right )}+\frac{\left (\sqrt{-a} \sqrt{c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{c} f-\sqrt{-a} g}}{\sqrt{f+g x} \sqrt{\sqrt{c} d-\sqrt{-a} e}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d-\sqrt{-a} e} \left (a e^2+c d^2\right ) \sqrt{\sqrt{c} f-\sqrt{-a} g}}-\frac{\left (-\sqrt{-a} \sqrt{c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{-a} g+\sqrt{c} f}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e+\sqrt{c} d}}\right )}{\sqrt{-a} \sqrt{\sqrt{-a} e+\sqrt{c} d} \left (a e^2+c d^2\right ) \sqrt{\sqrt{-a} g+\sqrt{c} f}} \]

[Out]

(-2*e*Sqrt[f + g*x])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) + ((c*d*f + a*e*g + Sqrt[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh
[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[Sq
rt[c]*d - Sqrt[-a]*e]*(c*d^2 + a*e^2)*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]) - ((c*d*f + a*e*g - Sqrt[-a]*Sqrt[c]*(e*f
- d*g))*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/(S
qrt[-a]*Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*(c*d^2 + a*e^2)*Sqrt[Sqrt[c]*f + Sqrt[-a]*g])

________________________________________________________________________________________

Rubi [A]  time = 2.15335, antiderivative size = 351, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {908, 37, 6725, 93, 208} \[ -\frac{2 e \sqrt{f+g x}}{\sqrt{d+e x} \left (a e^2+c d^2\right )}+\frac{\left (\sqrt{-a} \sqrt{c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{c} f-\sqrt{-a} g}}{\sqrt{f+g x} \sqrt{\sqrt{c} d-\sqrt{-a} e}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d-\sqrt{-a} e} \left (a e^2+c d^2\right ) \sqrt{\sqrt{c} f-\sqrt{-a} g}}-\frac{\left (-\sqrt{-a} \sqrt{c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{-a} g+\sqrt{c} f}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e+\sqrt{c} d}}\right )}{\sqrt{-a} \sqrt{\sqrt{-a} e+\sqrt{c} d} \left (a e^2+c d^2\right ) \sqrt{\sqrt{-a} g+\sqrt{c} f}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[f + g*x]/((d + e*x)^(3/2)*(a + c*x^2)),x]

[Out]

(-2*e*Sqrt[f + g*x])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) + ((c*d*f + a*e*g + Sqrt[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh
[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[Sq
rt[c]*d - Sqrt[-a]*e]*(c*d^2 + a*e^2)*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]) - ((c*d*f + a*e*g - Sqrt[-a]*Sqrt[c]*(e*f
- d*g))*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/(S
qrt[-a]*Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*(c*d^2 + a*e^2)*Sqrt[Sqrt[c]*f + Sqrt[-a]*g])

Rule 908

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> -Dist[(g*(e*f -
d*g))/(c*f^2 + a*g^2), Int[(d + e*x)^(m - 1)*(f + g*x)^n, x], x] + Dist[1/(c*f^2 + a*g^2), Int[(Simp[c*d*f + a
*e*g + c*(e*f - d*g)*x, x]*(d + e*x)^(m - 1)*(f + g*x)^(n + 1))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g
}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[m, 0] && LtQ[n, -1]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{f+g x}}{(d+e x)^{3/2} \left (a+c x^2\right )} \, dx &=\frac{\int \frac{c d f+a e g-c (e f-d g) x}{\sqrt{d+e x} \sqrt{f+g x} \left (a+c x^2\right )} \, dx}{c d^2+a e^2}+\frac{(e (e f-d g)) \int \frac{1}{(d+e x)^{3/2} \sqrt{f+g x}} \, dx}{c d^2+a e^2}\\ &=-\frac{2 e \sqrt{f+g x}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{\int \left (\frac{a \sqrt{c} (e f-d g)+\sqrt{-a} (c d f+a e g)}{2 a \left (\sqrt{-a}-\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}}+\frac{-a \sqrt{c} (e f-d g)+\sqrt{-a} (c d f+a e g)}{2 a \left (\sqrt{-a}+\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}}\right ) \, dx}{c d^2+a e^2}\\ &=-\frac{2 e \sqrt{f+g x}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{\left (c d f+a e g-\sqrt{-a} \sqrt{c} (e f-d g)\right ) \int \frac{1}{\left (\sqrt{-a}-\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}} \, dx}{2 \sqrt{-a} \left (c d^2+a e^2\right )}-\frac{\left (c d f+a e g+\sqrt{-a} \sqrt{c} (e f-d g)\right ) \int \frac{1}{\left (\sqrt{-a}+\sqrt{c} x\right ) \sqrt{d+e x} \sqrt{f+g x}} \, dx}{2 \sqrt{-a} \left (c d^2+a e^2\right )}\\ &=-\frac{2 e \sqrt{f+g x}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{\left (c d f+a e g-\sqrt{-a} \sqrt{c} (e f-d g)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c} d+\sqrt{-a} e-\left (\sqrt{c} f+\sqrt{-a} g\right ) x^2} \, dx,x,\frac{\sqrt{d+e x}}{\sqrt{f+g x}}\right )}{\sqrt{-a} \left (c d^2+a e^2\right )}-\frac{\left (c d f+a e g+\sqrt{-a} \sqrt{c} (e f-d g)\right ) \operatorname{Subst}\left (\int \frac{1}{-\sqrt{c} d+\sqrt{-a} e-\left (-\sqrt{c} f+\sqrt{-a} g\right ) x^2} \, dx,x,\frac{\sqrt{d+e x}}{\sqrt{f+g x}}\right )}{\sqrt{-a} \left (c d^2+a e^2\right )}\\ &=-\frac{2 e \sqrt{f+g x}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{\left (c d f+a e g+\sqrt{-a} \sqrt{c} (e f-d g)\right ) \tanh ^{-1}\left (\frac{\sqrt{\sqrt{c} f-\sqrt{-a} g} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{-a} e} \sqrt{f+g x}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d-\sqrt{-a} e} \left (c d^2+a e^2\right ) \sqrt{\sqrt{c} f-\sqrt{-a} g}}-\frac{\left (c d f+a e g-\sqrt{-a} \sqrt{c} (e f-d g)\right ) \tanh ^{-1}\left (\frac{\sqrt{\sqrt{c} f+\sqrt{-a} g} \sqrt{d+e x}}{\sqrt{\sqrt{c} d+\sqrt{-a} e} \sqrt{f+g x}}\right )}{\sqrt{-a} \sqrt{\sqrt{c} d+\sqrt{-a} e} \left (c d^2+a e^2\right ) \sqrt{\sqrt{c} f+\sqrt{-a} g}}\\ \end{align*}

Mathematica [A]  time = 0.67132, size = 267, normalized size = 0.76 \[ -\frac{2 e \sqrt{f+g x}}{\sqrt{d+e x} \left (a e^2+c d^2\right )}+\frac{\sqrt{-\sqrt{-a} g-\sqrt{c} f} \tan ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{-\sqrt{-a} g-\sqrt{c} f}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e+\sqrt{c} d}}\right )}{\sqrt{-a} \left (\sqrt{-a} e+\sqrt{c} d\right )^{3/2}}+\frac{\sqrt{\sqrt{c} f-\sqrt{-a} g} \tan ^{-1}\left (\frac{\sqrt{d+e x} \sqrt{\sqrt{c} f-\sqrt{-a} g}}{\sqrt{f+g x} \sqrt{\sqrt{-a} e-\sqrt{c} d}}\right )}{\sqrt{-a} \left (\sqrt{-a} e-\sqrt{c} d\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[f + g*x]/((d + e*x)^(3/2)*(a + c*x^2)),x]

[Out]

(-2*e*Sqrt[f + g*x])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) + (Sqrt[-(Sqrt[c]*f) - Sqrt[-a]*g]*ArcTan[(Sqrt[-(Sqrt[c]
*f) - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*(Sqrt[c]*d + Sqrt[-a
]*e)^(3/2)) + (Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*ArcTan[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[-(Sqrt[c
]*d) + Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*(-(Sqrt[c]*d) + Sqrt[-a]*e)^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.441, size = 5383, normalized size = 15.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{g x + f}}{{\left (c x^{2} + a\right )}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(g*x + f)/((c*x^2 + a)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**(1/2)/(e*x+d)**(3/2)/(c*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)/(e*x+d)^(3/2)/(c*x^2+a),x, algorithm="giac")

[Out]

Exception raised: TypeError